42 research outputs found

    Cryptic homoelogy analysis in species and hybrids of genus Zea

    Full text link
    Cryptic intergenomic pairing of genus Zea was induced by the use of a diluted colchicine solution in order to elucidate the phylogenetic relations and differentiation of the homoeologous genomes. Results indicate that in species and hybrids with 2n = 20, there was chromosome pairing between the homoeologous A and B genomes with a maximum of 5IV, with the exception of Zea diploperennis and their interspecific hybrids where cryptic homoeologous chromosome pairing was not induced. In almost all 2n = 30 hybrids, observed cryptic pairing increased to a maximum of 10III although Z. mays x Z. mays with 2n = 30 did not show significant differences between treated and untreated materials. Pairing was also observed in species and hybrids with 2n = 40, in which a maximum of 10IV was observed, with the exception of Z. mays with 2n = 40 where treated and untreated cells did not differ significantly.This research was supported by the Universidad Nacional de la Plata, Universidad Nacional de Lomas de Zamora and CONICET.Molina, M.; Lopez, C.; Staltari, S.; Chorzempa, S.; Moreno Ferrero, V. (2013). Cryptic homoelogy analysis in species and hybrids of genus Zea. Biologia Plantarum. 57(3):449-456. doi:10.1007/s10535-012-0299-4S449456573Bass, H.W., Riera-Lizarazu, O., Ananiev, E.V.B., Bordolini, S.J., Rines, H.W., Phillips, R.L., Sedat, J.W., Agard, D.A., Cande, Z.W.: Evidence for the coincident initiation of homologous pairing and synapsis during the telomereclustering (bouquet) stage of meiotic prophase. — J. Cell Sci. 113: 1033–1042, 2000.Bozza, C.G., Pawlowsky, W.P.: The cytogenetics of homologous chromosome pairing in meiosis in plants. — Cytogenet. Genet. Res. 120: 313–319, 2008.Chikashige, Y., Haraguchi, T., Hiraoka, Y.: Nuclear envelope attachment is not necessary for telomere function in fission yeast. — Nucleus 1: 481–486, 2010.Dobley, J., Iltis, H.H.: Taxonomy of Zea (Gramineae). I. A subgeneric classification with key to taxa. — Amer. J. Bot. 67: 982–993, 1980.Dover, G.A., Riley, R.: The effect of spindle inhibitors applied before meiosis on meiotic chromosome pairing. — J. Cell. Sci. 12: 143–161, 1973.Driscoll, C.J., Darvey, N.L.: Chromosome pairing: effect of colchicine on an isochromosome. — Science 169: 290–291, 1970.Driscoll, C.J., Darvey, N.L., Barber, H.N.: Effect of colchicine on meiosis of hexaploid wheat. — Nature 216: 687–688, 1967.Feldman, M., Avivi, L.: Genetic control of bivalent pairing in common wheat. The mode of Ph1 action. — In: Brandham, P.E. (ed.) Kew Chromosome Conference III. Pp. 269–279. Royal Botanic Garden, London 1988.Feldman, F., Liu, B., Segal, G., Abbo, S., Levy. A.: Rapid elimination of low copy DNA sequences in polyploidy wheat: a possible mechanism for differentiation of homeologous chromosomes. — Genetics 147: 1381–1387, 1997.Fukunaga, K., Hill, J., Vigoroux, Y., Matsuoka, Y., Sanchez G., J., Liu, K., Bucker, E., Doebley, J.: Genetic diversity and population structure of teosinte. — Genetics 169: 2241–2254, 2005.Furini, A., Jewell, C.: Somatic embryogenesis and plant regeneration of maize/Tripsacum hybrids. — Maydica 40: 205–210, 1995.García, M.D., Molina, M. del C.: Embryo rescue and induction of somatic embryogenesis as a method to overcome seed inviability in Zea mays ssp. mays (2n = 40) × Zea mays ssp. parviglumis crosses. — Biol. Plant. 44: 497–501, 2001.García, M.D., Molina, M. del C., Caso, 0.H.: [Maize (Zea mays ssp. mays) plant regeneration from tissue culture and its applications in maize breeding.] — Rev. Fac. Agron. UNLP 68: 15–25, 1992. [In Spanish]Goluboskaya, I.N., Harper, L.C., Pawlowski, W.P., Schicnes, D.; Cande, W.Z.: The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). — Genetics 162: 1979–1993, 2002.González, G., Poggio, L.: Karyotype of Zea luxurians and Z. mays subsp. mays using FISH/DAPI, and analysis of meiotic behavior of hybrids. — Genome 54: 26–32, 2011.Harper, L., Golubovskaya, I., Cande, W.Z.: A bouquet of chromosomes. — J. Cell. Sci. 117: 4025–4032, 2004.Iltis, H.H., Benz B.F: Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. — Novon 10: 382–390, 2000.Iltis, H.H.; Dobley J.: Taxonomy of Zea (Gramineae). II Subspecific categories in the Zea mays comple× and a generic synopsis. — Amer. J. Bot. 67: 994–1004, 1980.Jackson, R.C.: Polyploidy and diploidy: new perspectives on chromosome pairing and its evolutionary implications. — Amer. J. Bot. 69: 1512–1523, 1982.Jackson, R.C., Murray, B.G.: Colchicine-induced quadrivalent formation in Helianthus: evidence of ancient polyploidy. — Theor. appl. Genet. 64: 219–222, 1983.Jenczewski, E., Alix, K.: From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. — Crit. Rev. Plant Sci. 23: 21–25, 2004.Jenkins, G., Chatterjee, R.: Chromosome structure and pairing preferences in tetraploid rye (Secale cereale). — Genome 37: 784–793, 1994.Molina, M. del C.: Estudios citogenéticos evolutivos del Género Zea. [Cytogenetic Study of Zea Genus Evolution] — PhD Thesis, Polytechnic University of Valencia, Valencia 2011. [In Spanish].Molina, M. del C., Chorzempa, S.E., García, M.D.: Meiotic pairing in the hybrid (Zea mays × Zea diploperennis) × Zea luxurians. — Maize Genet. Coop. Newslett. 79: 5–7, 2005.Molina, M. del C., García, M.D.: Influence of ploidy levels on phenotypic and cytogenetic traits in maize and Zea perennis hybrids. — Cytologia 64: 101–109, 1999.Molina, M. del C., García, M.D.: Meiotic pairing in the interspecific hybrid Zea mays, Z. perennis and Zea diploperennis. — Maize Genet. Coop. Newslett. 74: 42–43, 2000.Molina, M. del C., García, M.D.: Ploidy levels affect phenotype and cytogenetic traits in Zea mays ssp. mays (2n = 20 or 40) and Zea mays ssp. parviglumis hybrids — Cytologia 66: 189–196, 2001.Molina, M. del C., García, M.D., López C.G., Moreno Ferrero, V.: Meiotic pairing in the hybrid (Zea diploperennis × Zea perennis) × Zea mays and its reciprocal. — Hereditas 141: 135–141, 2004.Molina, M. del C., Naranjo, C.A.: Cytogenetic studies in the genus Zea. I. Evidence for five as the basic chromosomes number. — Theor. appl. Genet. 73: 542–550, 1987.Naranjo, C.A., Molina, M. del C., Poggio, L.: [Evidence of a basic number x = 5 in the genus Zea and its importance in studies of the origin of maize] — Acad. Nac. Cs. Ex. Fis. Nat. 5: 75–84, 1989. [In Spanish].Naranjo, C.A., Poggio, L., Molina, M. del C., Bernatene, E.: Increase in multivalent frequency in F1 hybrids of Zea diploperennis × Z. perennis by colchicine treatment. — Hereditas 120: 241–244, 1994.Poggio, L., Molina, M. del C., Naranjo, C.A.: Cytogenetic studies in the genus Zea. 2- colchicine-induced multivalents. — Theor. appl. Genet. 79: 461–464, 1990.Ruiz, C., Sanchez, J.J., Aguilar, S.M.: Potential geographical distribution of teosinte in Mexico: a GISH approach. — Maydica 46: 105–110, 2001.Santos, J.L., Lacadena, J.R., Cermeno, M.C., Orellana, J.: Nucleolar organizer activity in wheat-barley chromosome addition lines. — Heredity 53: 425–429, 1984.Santos, J.L., Orellana, J.: Pairing competition between identical and homologous chromosome in rye and grasshoppers. — Genetics 104: 677–684, 1983.Schnable, J.C., Freeling, M.: Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. — PLoS ONE 6–3: e17855. Doi:101371/journal.pone.0017855, 2011.Schnable, J.C., Springer, N.M., Freeling, M.: Differentiation of maize subgenome by genome dominance and both ancient and ongoing gene loss. — PNAS 108: 4069–4074, 2011.Sokal, R.R., Rohlf, Y.: Biometría. — W.H. Freeman and Company, San Francisco 1978.Swanson-Wagner R., Eichten S., Kumari S., Tiffin P., Stein J., Ware D., Springer N.: Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. — Genome Res., in press, 2012.Swigonová, Z., Lai, J., Ma, J., Ramakrisma, W., Llaca, V., Bennetzen, J., Messing, J.: Close split of sorghum and maize genome progenitors. — Genome Res. 14: 1916–1923, 2004.Wendel, J.: Genome evolution in polyploidy, — Plant mol. Biol. 42: 225–229, 2000.Zickler, D., Kleckner, N.: The leptotene-zygotene transition of meiosis. — Annu. Rev. Genet. 32: 619–697, 1998

    Análisis de ploidia por citometría de flujo de callos embriogénicos de aliso andino (alnus acuminata h.b.k.)

    Get PDF
    El aliso (Alnus acuminata H.B.K.) es un árbol perteneciente a la familia Betulaceae, con gran potencial como fijador de nitrógeno, reforestador de cuencas hidrográficas y con variados usos de su madera. En el laboratorio de Biotecnología Vegetal de la Facultad de Ciencias Ambientales se obtuvieron líneas celulares embriogénicas de esta especie, las cuales fueron analizadas para estabilidad de ploidía mediante citometría de flujo, con la colaboración del Laboratorio de Cultivos Celulares del Instituto de Biología Molecular y Celular de Plantas en Valencia, España

    Oestrid myiasis in European Mouflon from Spain

    Get PDF
    From February 1992 to March 1997, 245 European mouflon (Ovis orientalis musimon) from Sierras de Cazorla, Segura y Las Villas Natural Park (southern Spain) were surveyed for oestrid larvae in order to estimate prevalence and mean intensity of parasitism by Oestrus ovis. Over 46 percent of the animals surveyed were infected, with a mean intensity of 9.6 larvae/host parasitized. No significant differences in prevalence rates between host sexes were observed, but older mouflons were infected with more larvae than younger ones.Peer Reviewe

    Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit

    Full text link
    [EN] Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato.This work was supported by the Ministerio de Ciencia e Innovacion (grant nos. BIO2009-11484, AGL2012-32613, AGL2012-40150-C03-01, and AGL2012-40150-C03-02) and by the European Commission through the Junta para la Ampliacion de Estudios-Doc program of the Consejo Superior de Investigaciones Cientificas (to B.P.).Giménez Caminero, ME.; Domínguez, E.; Pineda Chaza, BJ.; Heredia, A.; Moreno Ferrero, V.; Lozano, R.; Angosto, T. (2015). Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit. Plant Physiology. 168(3):1036-1048. doi:10.1104/pp.15.00469S10361048168

    TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development

    Full text link
    [EN] Within the tomato MADS-box gene family, TOMATO AGAMOUS1 (TAG1) and ARLEQUIN/TOMATO AGAMOUS LIKE1 (hereafter referred to as TAGL1) are, respectively, members of the euAG and PLE lineages of the AGAMOUS clade. They perform crucial functions specifying stamen and carpel development in the flower and controlling late fruit development. To gain insight into the roles of TAG1 and TAGL1 genes and to better understand their functional redundancy and diversification, we characterized single and double RNAi silencing lines of these genes and analyzed expression profiles of regulatory genes involved in reproductive development. Double RNAi lines did show cell abnormalities in stamens and carpels and produced extremely small fruit-like organs displaying some sepaloid features. Expression analyses indicated that TAG1 and TAGL1 act together to repress fourth whorl sepal development, most likely through the MACROCALYX gene. Results also proved that TAG1 and TAGL1 have diversified their functions in fruit development: while TAG1 controls placenta and seed formation, TAGL1 participates in cuticle development and lignin biosynthesis inhibition. It is noteworthy that both TAG1 and double RNAi plants lacked seed development due to abnormalities in pollen formation. This seedless phenotype was not associated with changes in the expression of B-class stamen identity genes Tomato MADS-box 6 and Tomato PISTILLATA observed in silencing lines, suggesting that other regulatory factors should participate in pollen formation. Taken together, results here reported support the idea that both redundant and divergent functions of TAG1 and TAGL1 genes are needed to control tomato reproductive development.This work was supported by the Spanish Ministry of Economy and Competitiveness (Grant Numbers AGL2012-40150-C03-01, AGL2012-40150-C03-02 and AGL2015-64991-C3-1-R); and the European Commission through the JAE-Doc Program of the Spanish National Research Council (CSIC) (Grant Number AGL2012-40150-C03-01 to B.P.).Giménez Caminero, ME.; Castañeda, L.; Pineda Chaza, BJ.; Pan, IL.; Moreno Ferrero, V.; Angosto, T.; Lozano, R. (2016). TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Molecular Biology. 91(4-5):513-531. https://doi.org/10.1007/s11103-016-0485-4S513531914-

    Método para la obtención de cultivares de tomate con frutos partenocárpicos (sin semillas) y mayor calidad organoléptica

    Get PDF
    Método para la obtención de cultivares de tomate con frutos partenocárpicos (sin semillas) y mayor calidad organoléptica. El método se basa en la transferencia y expresión del gen LFY de Arabidopsis thaliana en plantas transgénicas de tomate. Los frutos de las plantas transgénicas con el gen LFY mantienen el mismo tamaño y peso que los del cultivar original, pero carecen de semillas, tienen más carne, menos pulpa y una forma ligeramente apuntillada. El análisis de calidad refleja un incremento del 60% en el contenido en sólidos solubles (la media alcanza 6,12 ºBrix) y del 60% en ácidos valorables (la media llega al 0,72%), lo que indica una mejora de la calidad organoléptica de los frutos en comparación con los del cultivar original no transgénico. Además, los frutos de las plantas transgénicas tienen otros atributos que indican una mayor calidad, tales como un mayor contenido en azúcares (sobre todo glucosa y fructosa) y licopeno, una sustancia que tiene propiedades antioxidantes.Peer reviewedUniversidad Politécnica de Valencia, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (España), Universidad de AlmeríaB2 Patente con examen previ

    Método para la obtención de cultivares de tomate con frutos partenocárpicos (sin semillas) y mayor calidad organoléptica

    Get PDF
    Número de publicación: ES2323028 A1 (03.07.2009) También publicado como: ES2323028 B2 (08.07.2010) Número de Solicitud: Consulta de Expedientes OEPM (C.E.O.) P200501603 (23.06.2005)El método se basa en la transferencia y expresión del gen LFY de Arabidopsis thaliana en plantas transgénicas de tomate. Los frutos de las plantas transgénicas con el gen LFY mantienen el mismo tamaño y peso que los del cultivar original, pero carecen de semillas, tienen más carne, menos pulpa y una forma ligeramente apuntillada. El análisis de calidad refleja un incremento del 60 % en el contenido en sólidos solubles (la media alcanza 6,12 ºBrix) y del 60 % en ácidos valorables (la media llega al 0,72 %), lo que indica una mejora de la calidad organoléptica de los frutos en comparación con los del cultivar original no transgénico. Además, los frutos de las plantas transgénicas tienen otros atributos que indican una mayor calidad, tales como un mayor contenido en azúcares (sobre todo glucosa y fructosa) y licopeno, una sustancia que tiene propiedades antioxidantes.Universidad de Almería. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Consejo Superior de Investigaciones Científicas (CSIC

    Alq mutation increases fruit set rate and allows the maintenance of fruit yield under moderate saline conditions

    Full text link
    [EN] Arlequin (Alq) is a gain-of-function mutant whose most relevant feature is that sepals are able to become fruit-like organs due to the ectopic expression of the ALQ-TAGL1 gene. The role of this gene in tomato fruit ripening was previously demonstrated. To discover new functional roles for ALQ-TAGL1, and most particularly its involvement in the fruit set process, a detailed characterization of Alq yield-related traits was performed. Under standard conditions, the Alq mutant showed a much higher fruit set rate than the wild type. A significant percentage of Alq fruits were seedless. The results showed that pollination-independent fruit set in Alq is due to early transition from flower to fruit. Analysis of endogenous hormones in Alq suggests that increased content of cytokinins and decreased level of abscisic acid may account for precocious fruit set. Comparative expression analysis showed relevant changes of several genes involved in cell division, gibberellin metabolism, and the auxin signalling pathway. Since pollination-independent fruit set may be a very useful strategy for maintaining fruit production under adverse conditions, fruit set and yield in Alq plants under moderate salinity were assessed. Interestingly, Alq mutant plants showed a high yield under saline conditions, similar to that of Alq and the wild type under unstressed conditions.This work was supported by the research grants AGL2015-64991-C3-3-R and AGL2015-64991-C3-1-R from the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER). The PhD grant to CRA (BES-2013-063778) was funded by the Spanish Ministry of Economy and Competitiveness.The authors thank Dr Isabel Lopez-Diaz and Dr Esther Carrera for their help in hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP,Valencia, Spain. The authors thank David Harry Rhead for reviewing the manuscript in the English language.Ribelles Alfonso, C.; García Sogo, B.; Yuste-Lisbona, FJ.; Atarés Huerta, A.; Castañeda, L.; Capel, C.; Lozano, R.... (2019). Alq mutation increases fruit set rate and allows the maintenance of fruit yield under moderate saline conditions. Journal of Experimental Botany. 70(20):5731-5744. https://doi.org/10.1093/jxb/erz342S57315744702

    Nuevo cultivar con frutos y sépalos convertidos en frutos de alto interés para su consumo fresco y procesado industrial

    Get PDF
    Número de publicación: 2 341 527 21 Número de solicitud: 200900003 51 Int. Cl.: C12N 15/82 (2006.01) A01H 5/00 (2006.01Nuevo cultivar con frutos y sépalos convertidos en frutos de alto interés para su consumo fresco y procesado industrial. En la presente invención se describen secuencias de nucleótidos capaces de incrementar la expresión de un gen de desarrollo reproductivo lo que tiene como resultado la generación de cultivares con un fruto de alto interés para su consumo fresco y procesado industrial caracterizado por poseer características mejoradas respecto de los cultivares conocidos de variedades comerciales. Estos nuevos cultivares tienen el cáliz de la flor carnoso y convertido en fruto. El fruto verdadero y el cáliz tienen mayores niveles de azúcares y licopeno y un mayor contenido en grados Brix. Además, exhiben una mayor tasa de cuajado de fruto y tienen inhibida la zona de abscisión del fruto, lo que facilita la recolección mecánica.Universidad de Almerí
    corecore